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Abstract 

A generalization of the classical one-dimensional Darboux transformation to arbitrary n- 
dimensional oriented Riemannian manifolds is constructed using an intrinsic formulation based 
on the properties of twisted Hodge Laplacians. The classical two-dimensional Moutard transfor- 
mation is also generalized to non-compact oriented Riemannian manifolds of dimension n 1 2. 
New examples of quasi-exactly solvable multidimensional matrix Schriidinger operators on curved 
manifolds are obtained by applying the above results. 
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1. Introduction 

Our purpose in this paper is to define and study the properties of a broad generaliza- 

tion to n dimensions of the classical Darboux transformation for Sturn-Liouville oper- 

ators on the line. Our approach will stem from a geometric generalization of the basic 

intertwining relations underlying the classical Darboux transformation to the context of 

certain twisted Laplacians acting on the exterior algebra of an oriented Riemannian 

manifold. 
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Let us begin by recalling the essentials of the one-dimensional Darboux transformation, 
[3,4]. Consider a Sturn-Liouville operator h, given by 

h = -$ + V(X), 

and let e- x be a nowhere vanishing eigenfunction of h with eigenvalue Eo, 

(h - E~~)eCX = 0. 

The classical Darboux transformation associates to h the Sturm-Liouville operator h defined 

by 

i = -$ + F(x). 

where 

F = v + 2x’/. 

It is straightforward to verify that the operators h and i, shifted by Eo, can be factorized in 
the following way: 

h -E. = Q+ Q-, I$ -E. = Q- Q+. 

where Q+ and Q- are first-order differential operators defined by 

Q+=-;+xi: Q- = $ + x’. 

The operators h - Eo, I? - Eo, Q+ and Q- are therefore related by the intertwining relations 

(h - Eo) Q+ = Q+ (i; - Eo). Q- (h - Eo) = (h - Eo) Q-. 

We thus obtain a simple relation between the eigenfunctions (formal or L2) of h and those 
of its Darboux transform i. Indeed, if I/Y is a formal eigenfunction of h with eigenvalue 
E # Eo, then it follows immediately from the above intertwining relations that Q-q will 
be a formal eigenfunction of i with the same eigenvalue. Conversely, if 4 is a formal 
eigenfunction of h with eigenvalue E # Eo, then Q+$J will be a formal eigenfunction of 
h with eigenvalue E. It is not difficult to show that this correspondence also holds at the 
level of the L2 eigenfunctions of h and h, so that the Darboux transformation establishes a 
correspondence between bound states of h and t?. 

It is well known that the Darboux transformation plays an important role in the theory of 
soliton solutions of integrable evolution equations and in the method of inverse scattering 
[5]. It also provides a powerful method for generating new exactly or quasi-exactly solvable 
one-dimensional potentials from known ones [ 131. The Darboux transformation also appears 
as a basic tool in the theory of special functions through the factorization method of Infeld 
and Hull [lo]. The problem of extending the Darboux transformation to the case of multi- 
dimensional differential operators is therefore of considerable interest. 
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There are at least two natural candidates for what could be called a Darboux trans- 
formation in two dimensions, namely the Lupluce [9] and Moutard [ 121 transformations. 
The Moutard transformation is perhaps closer in spirit to the classical Darboux transfor- 
mation, since it is based on intertwining relations analogous to the ones given above for 
the Darboux transformation. This will be made explicit in Section 5. On the other hand, 
the Laplace transformation plays a significant role in the realm of integrable systems. For 
example, it naturally gives rise to the Lax representation for the A,, Toda lattice [ 141. In 
any case, both the Laplace and Moutard transformations preserve the class of linear ellip- 
tic second-order differential operators in the plane. However, unlike the one-dimensional 
Darboux transformation, they both suffer from the major limitation that they yield only ow 
eigenfunction for the transformed operator, the reason being that th~>~ &) ~zot i~or~o~~te 
the spectral purumeter E. Let us briefly illustrate this difficulty in the case of the Laplace 
transformation (the conclusion is analogous for the Moutard transformation). Consider the 
two-dimensional Schrodinger equation given by 

a* 
-azaz + v(x. .Y) 

> 
$ = E $7 

in terms of complex coordinates z = $(x + iy), Z = +(x - iy). Under the Laplace 

transformation, the wave function @ gets mapped to the wave function $ defined by 

and it is easily verified that the transformed wave function 4 satisfies the following 
Schrijdinger equation for a particle in a magnetic field 

a2 + 8 log( V - E) a 

a,732 a2 
$+V-E $=O. 

i 1 
The explicit dependence of the coefficient of a/az on E illustrates our point. There is 
also a drawback which is specific to the Laplace transformation, namely that its geometric 
generalization to n dimensions [ 1 l] applies to a class of highly overdetermined systems 
which bear no relation to any natural spectral problem, although they are of course interesting 
in their own right. Another essential limitation of the Laplace and Moutard transformations 
is that they are only defined for flat Laplacians expressed in Cartesian coordinates, whereas 
many of the Schrodinger operators arising by symmetry reduction involve curved Laplacians 
in very general coordinate systems. One would therefore like to have a multi-dimensional 
Darboux transformation which is defined in a covariant way, which allows for curvature 
of the underlying manifold and which includes the spectral parameter in a natural way. 

An indication on how to proceed is suggested by the work of Andrianov et al. [2]. In 
their scheme, one starts from a Schrodinger operator h in the Euclidean plane, expressed in 
Cartesian coordinates, and one constructs, starting from a nowhere vanishing eigenfunction 
of h, the Moutard transform h of h, and a 2 x 2 matrix Schriidinger operator H which splits 
into the sum of two operators H (l) and Hc2). The intertwining relations between h, h, H(‘) 
and HC2) imply that h and H (‘1 have the same eigenvalues except possibly for the zero 
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eigenvalue, and similarly for h and H(*). (This construction was later generalized in [l] to 
jkzt n-dimensional Euclidean space, still using Cartesian coordinates in an essential way.) 
After a careful analysis of this scheme, we conclude that the operators h, H and h introduced 
in [2] can in fact be re-expressed as twisted flat Laplacians acting on O-forms, 1 -forms and 
2-forms, the latter being identified with O-forms by means of the Hodge operator for the 
underlying two-dimensional flat Euclidean metric. The intertwining relations between h, 
h, H(l) and H(‘) will now follow immediately from elementary properties of the twisted 
differentials and codifferentials. 

Starting from this observation, we succeed in our paper to construct a fully covari- 
ant and coordinate-free multi-dimensional generalization of the classical Darboux trans- 
formation, valid on an arbitrary curved n-dimensional oriented Riemannian manifold. 
Our n-dimensional Darboux transformation relates, via intertwining relations involving 
twisted differentials and codifferentials, the spectra and eigenfunctions of a string of n + 
1 twisted Laplacians acting on k-forms for 0 5 k 5 II. It is noteworthy that these are the 
twisted Laplacians which were used by Witten [16] in his proof of the Morse inequali- 
ties based on ideas from supersymmetry. When expressed in any coordinate system, these 
twisted Laplacians take the form of matrix Schrodinger operators acting on the (‘;) com- 
ponents of a k-form. In the special case where the underlying manifold is flat Euclidean 
space in Cartesian coordinates, our multi-dimensional Darboux transformation reproduces 
the classical Darboux transformation and the scheme of [ 1,2]. 

Our paper is organized as follows. In Section 2, we define the twisted versions of the 
differential, the codifferential and the Laplacian on forms. When expressed in local co- 
ordinates, the latter will correspond to scalar and matrix Schrddinger operators on curved 
Riemannian manifolds. In Section 3, we first derive the basic intertwining relations defining 
our multi-dimensional Darboux transformation and give their spectral interpretation. This 
generalization of the Darboux transformation is valid for twisted Laplacians on an arbitrary 
n-dimensional oriented Riemannian manifold. We then derive the local coordinate expres- 
sions of the resulting matrix Schrodinger operators in terms of the seed eigenfunction for 
the original scalar Hamiltonian and the Riemann curvature of the background metric. The 
connection between the spectra of our matrix Hamiltonians admits an interesting interpreta- 
tion in terms of supersymmetry, cf. [ 1,1.5,16], which we briefly recall. In Section 4, we show 
that our multi-dimensional Darboux transformation reduces to the classical Darboux trans- 
formation on the line and to a covariant coordinate-free generalization to curved oriented 
Riemannian manifolds of the scheme of Refs. [ 1,2] in two dimensions. In Section 5, we de- 
rive a covariant n-dimensional generalization of the Moutard transformation which applies 
to all twisted Laplacians. The spectral interpretation of the multi-dimensional Moutard 
transformation is significantly more limited than that of the multi-dimensional Darboux 
transformation, because it only applies to the zero modes of the twisted Laplacians. Finally, 
in Section 6 we obtain new examples of multi-dimensional quasi-exactly or exactly solvable 
matrix Schrodinger operators of physical interest, of which very few seem to be known, by 
applying the multi-dimensional Darboux transformation to various quasi-exactly solvable 
planar Hamiltonians [6]. 
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2. Twisted Laplacians and SchrSdinger operators 

Our purpose in this section is to define a twisted version of the Laplacian on k-forms on an 
oriented Riemannian manifold. On scalar functions, this twisted Laplacian will correspond 
to a Schrodinger operator. 

We start by setting up some notation. Let M be an n-dimensional oriented Riemannian 
manifold, with metric (g;;)t5i,ji,, and volume form p = m dx’ A . . A dx”. The 
scalar product induced by the Riemannian metric on the exterior algebra of M is denoted 

by 

and the standard inner product of the k-forms a, b E A’(M) is given by 

(a, B) = 1 (a, B) p. 

M 

The inner product (a. p) will of course only be defined when the above integral is convergent. 
Our convention for the Hodge star *cz E A “-k(A4) of a k-form u is the usual one, namely, 

(*cU)j,+ ,... j,, = dZ tj ,... j,,Ck!j""jh. 

k! 
(1) 

The codifferential 6 of a k-form (;Y is then defined by the formula 

6a! = (-l)“(k-‘)+’ * d(*cr), cx E Am, 

so that in local coordinates, we have 

(dCY)i,...i,_, = -Vj aji,...ik_l, (2) 

where V denotes the covariant derivative associated to the Riemannian metric. With our 
sign conventions, the operators d and 6 are the formal adjoint of one another with respect 
to the scalar product on r\(M), 

d; = &+I. Olkln-1 

The local exactness of d (Poincare’s lemma) implies that S is also locally exact. 
Our sign convention for the Hodge Laplacian A : /\k (M) + A’(M) is given by 

-A = dS + 6d 

so that -A is (formally) self-adjoint and non-negative. With this sign convention, A reduces 
to the classical Laplace-Beltrami operator Vi Vi on scalar functions. A Schriidingeroperutor 

(or Hamiltonian) on M is a second-order differential operator h : A’(kf) + A’(M) of the 
form 

h=-A+V. (3) 
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where A is the classical Laplace-Beltrami operator, and the potential V is a scalar function. 
Just as the classical Laplace-Beltrami operator is the restriction of -(d6 + Sd) to r\‘(M), 
an arbitrary Schrodinger operator h can be expressed in terms of a “twisted’ version of the 
latter operator. 

To this end, given a smooth real-valued function x on M we introduce the twisted 
dij%rentials 

d’ = e’X &fK 

and the twisted codifSerentials 

6’ = e+X Sefx. 

The operators d* and 6’ have the following properties, which follow directly from analo- 
gous properties of d and 6: 

(i) (d*)’ = 6T, 
(ii) (d*)2 = (cS*)~ = 0, 

(iii) d* and 6* are locally exact. 
There are two natural ways of “twisting” the operator A in such a way that the resulting 
operator maps r\“(M) into itself for k = 0. I, . , n and is formally self-adjoint and non- 
negative; namely, we can define the twisted Hedge Laplaciuns 2 

H = d-6+ + S+ dd, fi = d+6- + 6- d+. 

Let us take the first of these operators, and apply it to scalar functions. Using the identity 

8(fdg) = -fAg - (df. dg) = -fag - Of. Vg , 

where ,f and R are scalar functions on M, we obtain the following expression for the action 
of the operator H on a function f E r\‘(M): 

Hf = (-A + V - Eo) f, 

where 

V = (W2 - Ax + Eo, (4) 

and Eo is an arbitrary real constant whose purpose will soon become clear. (Note that V 

is real, since x is a real-valued function.) Thus, an arbitrary Schrbdinger operator h can be 
represented as 

h = Ho + E. = (S+d- + d-S+)o + Eo, 

provided that the function x satisfies (4). The meaning of (4) and of the arbitrary constant 
Eu is apparent if we observe that 

(h - Eo)eCX = Hoe-X = S+d-eCx = 0. 

* The one-parameter family of twisted Laplacians Ht obtained from H by setting x = t ~0, where t E R 
and ~0 is a Morse function on M. was studied by Witten in his derivation of the Morse inequalities using 
supersymmetric quantum mechanics, cf. [ 161. 
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In other words, (4) is equivalent to the fact that eP X is a formal eigenfunction of h with 
eigenvalue Eo. Note that here, and in what follows, by aforrnd eigenfLmction of an operator 
h we simply mean a solution $ of the eigenvalue equation (h - E)$ = 0. regardless of the 
boundary conditions (like square integrability) that may be used to define true eigenfunctions 
ofh. 

Similarly, if we apply the twisted Laplacian fi defined above to a scalar function f E 
A”(M) we obtain 

fi,f = 6- d+,f = (-A + c - Eo) ,f 

with ? given by 

~=(VX)~+AX+.&=V+~AX. 

since I’? is obtained from H by replacing x with -x. Letting 

h=-A+v 

(5) 

(6) 

we then have 

(i7 - Eo)eX = 0. 

The Schradinger operator i is the Mouturd trunsfimn of h [ 121. 

3. The multi-dimensional Darboux transformation 

The goal of this section is to define the multi-dimensional Darboux transformation. The 
definition will be naturally suggested by some fundamental intertwining relations involving 
the differential operators on r\(M) introduced in Section 2. 

Let us consider the operator H : A(M) + A(M), which we shall decompose as follows: 

H = H”’ + H(2) 

where 

H’” = d-6+. H’“’ = &+d- 

Observe that, since S+ and dP are coboundary operators, we have 

H”’ H’2’ _ H”’ H”’ = 0 (7) 

Since the operator H maps A”(M) into itself for k = 0, 1, . . n, we can also write 

H =@Hh, 
k=O 

where Hk is the restriction of H to A”(M). The operator & can be decomposed as 

Hk = Hi” + Hi2’. 
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where Hi” and HF’ are the restrictions of H(l) and Hc2) to Am. In particular, 

209 

H(‘) _ H(2) = 0, 
0 - n 

From (7) we obtain 

H’” H(2’ = H(2) H’” _ 0 

k h h k-, (8) 

By construction, H is formally self-adjoint and non-negative. Therefore the same is true for 
the operators Hk : r\“(M) -+ Am for k = 0. 1, . , II. Likewise, both Hi” and HL2) 

are formally self-adjoint and non-negative, the latter property being a consequence of the 
identities 

(w, H;‘)a) = (d-cr, d-o). 

(CX. H;%) = @+a, 6+a(). a!EA”(M), k=O.l,..., II. 

The following intertwining r&Cons are an immediate consequence of the definition of 
H(t) and H’“: 

S;+, Hi:, = 17;” “kf+, , (9) 

H(‘) d; = d-HC2) 
h+I X k k‘ k=O. l....) n- 1. (10) 

The intertwining relations (9) and (10) have important consequences for the spectra of 
the operators Hi:, and HL2), that we shall now explore. 

Proposition 1. 
(i) !f’w E Ak+‘(M) 1s un elgerzform oj Hk+, (‘I with eigenvalue h # 0, then S+w = Sc+,w 

is un eigenform of Hj2’ bvith the snme eigenvalue. 

(ii) LikeM?se, ifw E r\“(M) is ~111 eigenform of Hi2’ M?ith eigenvalue h # 0, then ddw = 

dkw is an eigenform of Hi:, kvith the same eigenvalue. 

Proqfi The only point that is not an immediate consequence of the intertwining relations 
is that 6+w in part (i) cannot vanish identically, and likewise for d-w in part (ii). Let us 
show, for instance, that S+w # 0 in part (i). If 6+w = 0, then by the local exactness of 
6+ (property (iii) in Section 2) for every p E M there is an open neighborhood U,, of p 
such that w = S+cr, on U,,, for some differential form CX,, on U,,. But this would imply that 

H;:‘,w = dd6+(6+ alp) = 0 on U,, for every p E M, so that H:y,w = 0 on M. Hence 
h = 0, contradicting the hypothesis. 0 

Let L be a differential operator on r\(M) mapping each subspace Am into itself. 
Examples of such an operator are H, H(‘) and H@). We shall denote by A(L) c A(M) the 
set of udmissible forms for L, that is the subspace of the space of square-integrable forms 
L2(r\(M)) satisfying any additional boundary or asymptotic conditions that are appropriate 
for the problem being considered. The set of admissible forms for Lk is then d(Lk) G 
dk(L) = A(L) n Am. The spectrum of L, denoted by a(L), is the set of numbers h 
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such that there is an admissible non-zero eigenform w E A(L) satisfying the eigenvalue 
equation L w = h w. We shall also use the convenient notation 

o’(L) = a(L) - (0). 

The linear space of all k-forms w satisfying the eigenvalue equation L w = h w will be 
denoted by r\;(L). Equivalently, r\:(L) is the set of eigenforms of Lk with eigenvalue h, 
together with the zero k-form. 

By the formal self-adjointness and non-negativity of Hk, HL” and Hj2’, the eigenvalues 
of these operators are real and non-negative. Proposition 1 has the following immediate 
corollary: 

Corollary 2. If the operators 6+ and d- map A = A(H) into itselx then the spectra of 
HC2) and Hjk’, are related hi k 

a’(Hi2’) = a’(H;$. k = 0, 1.. . n - 1. (11) 

In the remainder of this section, we shall not distinguish between true and formal eigen- 
forms, unless otherwise indicated. The following lemma, whose proof is elementary, will 
have non-trivial consequences in what follows: 

Lemma 3. Let V be a vector space, and let L : V + V he a linear operator: Suppose 
that 

(9 

(ii) 
(iii) 

L = LI + L2, with LI L2 = L2 L1 = 0. The,following statements are then true: 
If v is an eigenvector of L with eigenvalue h, either L; v = h v mnd Lj v = 0 for some 
i, j E (1, 2) with i # j, or L; v is an eigenvector qf Li with eigenvalue h for i = 1, 2. 

o(L) c O&l) U(J(L2). 

a’(L) = a’(L,) u a’(L2). 

From the previous lemma and (8), it follows that 

o’(Hk) = o’(Hf’) U a’(Hi2’). (12) 

Thus, the spectrum of &, with the possible exception of the zero eigenvalue, is simply 
the union of the spectra of its components Hi” and HF’. The spectra of HiyI and Hf’ 
(k =O,l...., II - 1) are identical, except perhaps for the zero eigenvalue. The operator 
6+ maps eigenforms of HLy, with non-zero eigenvalue into eigenforms of Hi” with the 

same eigenvalue, and similarly d- maps eigenforms of Hj2’ with non-zero eigenvalue into 

eigenforms of Hi:, with the same eigenvalue. From the identity (11) we easily obtain the 
following relation between the even and odd components of H: 
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Definition 4. Let h # 0, and k = 0, I, . , n - 1. If w E A:+’ (H (1) ), its Darboux 
transform is the k-form 6+w E A: (H(*)). Similarly, the Darboux transform of a k-form 
w E r\t(H(*)) is the (k + l)-form ddw E r\t+‘(H(‘)). 

From the definition of H(‘) it directly follows that if k # 0 the restriction 6+ : A:+’ (H(l)) 
+ ~f(ff(*)) isinvertible,its inversebeingtherestrictionh-’ d- : A~,(H(~)) + A~+‘(H(‘)). 

The Darboux transformation we have just defined acts in a natural way on eigenforms 
of the partial Hamiltonians H(l) and HC2). In the same spirit, we shall see next how to 
use the Darboux transformation to construct new eigenforms of H of degree k - 1 and/or 
k + 1 starting from a given eigenform of degree k with non-zero eigenvalue. To this end, let 
w E ~~ (M) be an eigenform of H with eigenvalue h # 0. By Lemma 3, either H(‘) w = h o 
for some i E { 1. 21, or H(‘) w is an eigenform of H(‘) with eigenvalue h # 0 for i = 1.2. 
In the first case, the Darboux transform of w is well defined according to Definition 4, 
and belongs to either A;-’ (Hc2)) (when i = l), or to Ai+’ (H(l)) (when i = 2). By 
Lemma 3, it follows that the Darboux transform of w is an eigenform of H in this case. In 
the second case, the Darboux transforms of both H (‘)w and H (*)w are defined and, as before, 
are eigenforms of H with eigenvalue h. Hence in this case both S+H(‘) w = 6+ d-6+ w 
and ddHc2) w = ddS+ d- w are eigenforms of H with eigenvalue h and degree equal 
to k - 1 and k + 1, respectively. Note that in this case both H(‘)w and Hc2)w are also 
eigenforms of H of degree k with eigenvalue h, neither of which is proportional to o 
(although the span of w, H(l) w and Hc2)w is obviously two-dimensional). Thus in the 
second case, i.e, when H(‘) w # 0 for i = 1,2, we can construct three new eigenforms of 
H of degrees k - 1, k and k + 1 and eigenvalue h # 0 starting from a known eigenform 
w E A;(H). 

The above construction could have been carried out using the twisted Laplacian I? instead 
of H. However, we shall now show that the two constructions are equivalent: 

Proposition 5. For k = 0, 1. . . , n, the operators H,2_k and fik are linearly equivalent 
under Hodge duality 

& = (*)-‘H,l_k * (13) 

ProoJ: An elementary calculation shows that 

*f&-k* = (-l)k(n-k)&, 

from which (13) easily follows. ??

Note that in particular, H, is equivalent under this identification to & = h - Eo, the 
Moutard transform of HO = h - Eo. 

We end this section by deriving local coordinate expressions for the multi-dimensional 
Darboux transformation and for the component Hamiltonians Hk and kk. By definition, 

d-w = e-X d(ezw) = dw + dX A w 
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so that if o E A’(M), we have the following local coordinate expression: 

(d-w)ji,...;, = (V[j + Xj) w~...~~I 

= (Vj + Xj) Wil...ik - C(Vi? + Xi,) Wij...i,-_I ji,-+l...ir f (14) 
r=l 

Here the square brackets denote antisymmetrization, and xj = Vjx = ax/axj. Similarly, 
using (2) we obtain 

(S+W)i,...i,_, = (-V-j + Xj) Wji ,... jr_, , W  E A”(M). 

Using the local formulas ( 14) and ( 15) we obtain, after some calculation: 

(HkW)il...ik = [-VjVj + (VX)* - AxIwir...i, 

(15) 

+2x V’jVi,X ’ WI . ..i.--l ji,+l . ..ik 

r=l 

+ c (-lY+’ R”ir qj ,... c...jr 
r=l 

+ C (-l)‘+q+’ Rjir’Iriy Wj[li, . ..~...~...ik ’ (16) 

lq<y& 

In the latter formula, our sign convention for the Riemann tensor R’jh( is determined by 

while R’j is given in terms of the Ricci tensor R;j by 

Rlj = Rihhj = gi” R,,j, 

In particular, setting x = 0 we obtain a well-known formula for minus the Laplacian in 
local coordinates. The operator Hk has the structure 

Hk = -A,: + vk. 

where dk is the restriction of the Laplacian to Ak(M), and vk acts like a matrix potential 
on the components of any k-form: 

k 

(vkW)il...ik = [(VX)* - AXI wiI...ik Jr 2x VjVi,X . WI...i,-lji,+l...ik 
I=1 

= (V - Eu)wi,.,.i, + 2 C VjVi,X ’ Wi,...i,_l ji,.+l...;,. 
r=l 

The local coordinate expressions for the component Hamiltonians & are obtained from the 
previous formulas by replacing x with -x. 
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As first pointed out by Witten [ 15,161 (see also [l]), the connection between the spectra of 
the component Hamiltonians Hk discussed in this section admits an interesting interpretation 
in terms of supersymmetry. Indeed, the n + 1 homogeneous components Wk of degree k of a 
differential form fl = @!!u Wk can be interpreted as the components of a supermultiplet, 
with k-forms regarded as being bosonic or fermionic depending on whether k is even or 
odd, respectively. The supercharges Q’ are by definition the operators 

Q- = 6+, Q+ = (Q-)i = d-, 

while the supersymmetric Hamiltonian 

H = (Q+, Q-l 

is just the twisted Laplacian. The remaining commutation relations defining the standard 
supersymmetry algebra 

{Q*, Q*l = [Q’, HI = 0 

hold thanks to the elementary properties of d*, 6’. 
We can also introduce fermion creation and annihilation operators 

where J denotes the inner product. The usual fermionic anticommutation relations 

(b’+, bj+} = [bi, b]:} = 0, {bi+, b]:} = Sj, 

as well as the identity 

b’+ = (b’-)t E (g’j bJJt, 

follow easily from well-known exterior algebra identities. The supercharges Q’ can be 
expressed in terms of the creation and annihilation operators as 

where 

qL+W = j$ (FVi + Vix) Oil...ik . dxi’ /, . . . /, dXik = gij qj*W 

One can easily check the identity 

H = -A + (VX)* + ViVjx . [bif, b’-1, 

which generalizes formula (13) of [ 161 (where an orthonormal basis of the tangent space is 
used to define creation and annihilation operators). 
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4. The Darboux transformation in low dimensions 

Let us begin by showing that in the one-dimensional case the multi-dimensional Darboux 
transformation reduces to the classical Darboux transformation. Indeed, in this case M = [w, 
HO = h - Eo, and HI is equivalent to fia = & - Eo under the Hodge duality. If 

h = -$ + V(x), 

then from (5) we have 

h = -$ + F(X). 

where 

F = v + 2x” 

and 

(h - Eo) eex = 0. (17) 

The operator d- maps eigenfunctions of h = HO + Eo with eigenvalue E # Eo into 
eigenfunctions of HI with eigenvalue E - Eo. Therefore, the operator Q- = *d- will 
map eigenfunctions of h with eigenvalue E # Eo into eigenfunctions of h with the same 
eigenvalue. If x is a Cartesian coordinate, we easily obtain 

Q- = *d- = 2 + x’. (18) 

Similarly, if 4 is an eigenfunction of h = fi + Ee with eigenvalue E then *$J will be an 
eigenfunction of HI with eigenvalue E - Eo, and therefore the operator 

(19) 

maps eigenfunctions of i with eigenvalue E # Eo into eigenfunctions of h with the same 
eigenvalue. The operators Q- and Q+ are formally the adjoint of one another under the 
Euclidean scalar product on [w, and we have 

11 - E. = Q+ Q-. h-E0 = Q- Q+. (20) 

Eqs. (17)-(20) express indeed the classical Darboux transformation. 
The two-dimensional Darboux transformation generalizes to curved oriented surfaces 

the Darboux transformation introduced in [2] for [w2 in Cartesian coordinates. Indeed, let 
M be a two-dimensional oriented Riemannian manifold. The component Hamiltonians are 
in this case HO = h - Eo, HI : r\‘(M) + A’(M) and H2 : Am + Am, which is 
equivalent under the Hodge duality to HO = h - En. The scalar Hamiltonians h and h are 
given by Eqs. (3)-(6) while the function e-x as usual satisfies (h - Eo) e-x = 0. To the 
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operator HI acting on l-forms there corresponds an operator l?l acting on vector fields, 
defined by 

&X = (HIXh)! (21) 

where X” = g;jXj dx’ is the l-form associated to the vector field X = X’a/ax’, and 
$ = b-‘. Using (16) we easily find the following local coordinate expression for fit X: 

(fit X)' = [-VjVj + (Vx)’ - Ax]X’ + 2 V’Vjx ’ Xj + RJ Xj. 

From the well-known two-dimensional identity 

R; = X6;, 

where K is the Gaussian curvature of M, we obtain the equivalent expression 

(tit X)' = [-VjVj + (Vx)* - Ax + K]X’ + 2 V’Vjx ’ Xj. (22) 

In flat space and Cartesian coordinates, the above formula for fit reduces to formula (9) of 
[Z]. By Corollary 2 and Eq. (12) the spectra of the Hamiltonians h, 6 and fit are related by 

a’(&) = a’@ - Eu) u cr’(i - E(J). 

We shall now derive an expression for the two-dimensional Darboux transformation in 
local coordinates. Let the operators q,* and p’ be defined in local coordinates by 

4[+ = TV; + Xi = Fe*XVjerx, P,* = &tijqj’. (23) 

In particular, notice that the operators q,* (resp. p’) transform like the components of a 
covariant tensor (resp. pseudo-tensor) of rank 1 under changes of local coordinates. 

If + is an eigenfunction of h with eigenvalue E # Eo, then dd+ is an eigenfunction of 
HI with eigenvalue E - Eo. Using the general formula (14) we have 

(d-$)i = q,ti. (24) 

From (21) it follows that the vector field with components 

xijqj:$ E sj-$ (25) 

is an eigenvector of 61 with eigenvalue E - Eo. Suppose now that 4 is an eigenfunction of 
h with eigenvalue E # Eo. Then *@ is an eigenform of H2 with eigenvalue E - Eo, so that 
S+(*@) is an eigenform of HI with eigenvalue E - Eo. From the local formulas (1) and 
(15) and the fact that the pseudo-tensor with components ,& Eij is covariantly constant, it 
follows that 

s+(*c#l)j = -p,:q5. 

Therefore the vector field with components 

(26) 
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is an eigenvector of H) with eigenvalue E - Eo. Note also that p’* can be expressed as 

P 
i+ 

9 f 

=- 
~j 

tij 4j 

Conversely, if P = I/J~ dxi is an eigenform of H,(l) with eigenvalue h # 0, then 
(Lemma 3) !P is an eigenform of H1 with the same eigenvalue, and 6+P is an eigenfunction 
of h with eigenvalue h + Eu. From (2) we obtain 

(27) 
n 

where the vector field ly” = I,!/ a/ax’ is an eigenvector of HI. Likewise, if ly is an eigenform 
of NY) with eigenvalue h # 0 then w is an eigenform of HI with the same eigenvalue, 
and 6+P is an eigenfunction of H2 with eigenvalue h + Eo. It follows that *6+@ is an 
eigenfunction of h with eigenvalue h + Eo. Using the local coordinate formulas (1) and 
(14) we easily obtain 

*d-r& = p++’ I ’ (28) 

where again the functions I/J’ are the components of an eigenvector of HI with eigenvalue 
h. As before, in flat space and Cartesian coordinates Eqs. (23), (25)-(28) reduce to the 
corresponding formulas in [2]. 

The above formulas expressing the two-dimensional Darboux transformation in terms 
of the operators q’ and p’ suggest that the component Hamiltonians and the intertwining 
relations can also be written in terms of the latter operators. A straightforward computation 
using the local coordinate expressions for *, d and 6 shows that this is indeed the case. More 
precisely, we have 

h - E. = q+qi- I ’ i; - E. = q,q’+ = p+pi 

and Hr = H1(‘) + Hip’ with 

(fi;t)Ly)i = qi-q;@ S (H(l))ijqj, (H,‘2)p)i = pi-p;+i _ (H(2))ij+j. 

Notice that, strictly speaking, (H(k))ij is not the (i, j)th matrix element of the operator 
Hck), since Vi r,!rj in general depends on all the components of P. Similarly, the intertwining 
relations (9) and (10) can be written as 

q+(fi(‘))‘j = (h - Eo) q,f, ($l))‘jqj- = qi-(h _ Eo) 

p+(S’2))ij = (h - Eo) PI?, (fi(2))ijpj- = pi-(,$ _ Eo) 

In flat space and Cartesian coordinates, the above expressions reduce to the corresponding 
ones in [2]. 

We shall now show how the classical Moutard transform [ 121 is generalized in the case 
of an oriented Riemannian surface. To this end, suppose that I/I is a formal eigenfunction of 
h with the same eigenvalue Eo as e- X Note that J!J need not be proportional to e-x, since 
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we are dealing with formal eigenfunctions. A Moutard transform of $ is any function $ 
satisfying 

d+$ = 6-(x$). (29) 

Locally, the above equation has a solution if and only if (h - EO)I/J = 0. Indeed, by the 
local exactness of d+ the compatibility condition of (29) is 

d+8-(*@) = 0. 

The Hodge dual of the latter equation is simply 

S+ d-$ = (h - Eo)+ = 0. 

as claimed. Note that the Moutard transform 4 is locally defined by (29) only up to a 
constant multiple of ex. Indeed, if $1 and $2 are two Moutard transforms of $ then their 
difference satisfies df(& - J&/Z) = 0, that is d[e-x($t - $2)] = 0. 

If 6 is any Moutard transform of $, then 

(I; - E&i = 0, 

where as before h is the Moutard transform of h. Indeed, applying 6- to (29) we obtain 

0 = 6- d+(G) = tio$ = (h - E&j. 

5. The multi-dimensional Moutard transformation 

We shall derive in this section a generalization to oriented Riemannian manifolds of 
arbitrary dimension of the classical two-dimensional Moutard transformation introduced 
in Section 4. The key to this generalization is a remarkable connection between the zero 
eigenspaces of the operators Hi’) and Hiy2 (or, equivalently, of the components 2’2’ and 

fii!Z of fi defined below) that we shall describe next. 
Throughout this section, M will denote an oriented Riemannian manifold of dimension 

?z 1 2 with trivial de Rham cohomology. In particular, the latter condition will always hold 
if M is a contractible open subset of any oriented Riemannian manifold. Let us decompose 
I? as 

with 

$1) = 6- d+, ,+2) = d+J- 

so that 

g(‘) = (*)-I/$(‘)*, i = 1, 2, 

as in Proposition 5. As before, the operators H(‘) are formally non-negative and are the 
formal adjoint of one another. If k = 2,3. . . , n, let o E r\k(fic2)) be a zero mode of Z?c2), 
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i.e, a k-form w satisfying the equation l? c2)w = 0. In this section we shall exclusively deal 
with formal eigenforms, so that in particular w is not required to be square-integrable. By 
analogy with (29), it is natural to consider the equation 

d+G=S-w (30) 

as an equation for the (k - 2)-form W. The properties of (30), which are easily established, 
are analogous to those of (29), namely: 

(i) Eq. (30) is compatible if and only if w is a zero mode of Ec2). 
(ii) W is uniquely defined by (30) up to an element of Im dkf_3 = ex Im dk_3. In particular, 

if k = 2 we have Im cl_ 1 = R (the space of constant functions on M), so that Im dt, = 

Rex. 

(iii) Any solution W of (30) is a zero mode of I?iy2, i.e., we have 

From the above properties it follows that (30) defines a mapping 

which is easily seen to be an isomorphism by the assumption on the de Rham cohomology 
of M. Note that for the above mapping to be non-trivial A4 must be non-compact. Indeed, if 
M is compact then an easy integration by parts argument implies that A; ( fic2)) = Im Sk+, 

and ~i-~(fi(t)) = Imdk+_X. 

Totally analogous considerations can be made for the components Hk2’ and Hjy2 of H. 

To be precise, consider the equation 

6+ ~3 = ddo. (31) 

where w is a k-form and k = 0, 1, . . , n - 2. As before, the integrability condition for (3 1) 
is that w be a zero mode of Hi”, in which case & E A k+2 (M) is uniquely defined modulo 

Irn Sk++3 = eXIm&+j (with Im&,+t = *(Im&t) = RI*), and is a zero mode of HjT2. 

Eq. (3 1) thus defines a mapping 

- 
: r\i(HC2))/Imd;_, + r\F2(H(‘))/Im6+ k+3’ Osksn-2, 

which is again an isomorphism. Clearly, the mappings - and U are related by Hodge duality. 
More precisely, an elementary calculation yields the following result: 

Proposition 6. The maps ( y )k and - (-),,_k are conjugated under Hodge duality 

(“)k = -(*)-I 0 (-)rl_k 0 *. (32) 

Comparing Eqs. (29) and (30), we see that a Moutard transform of a function + E 
r\i(Hc2)) = r\:(H) on a two-dimensional manifold M is simply any function 111 in the 
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equivalence class of *i/r, which will be an element of A:(!?(‘)) 3 A:(@. This observation 
motivates the following general definition: 

Definition 7. The Moutard transform of w E A;( H(‘))/Im dF_, is the element 

- 
i3 = *w 

of A ;;-X-2(H(‘))/Imd,+-k_3. 

The domain and the range of the Moutard operator -defined above follow immediately 

from the identity 

N - 
= o*. 

or equivalently, using (32), 

- = -(* 0 ‘). 

In other words, if w E r\i(H(*))/ImdF_,, its Moutard transform is the unique solution 
ij E A’Z-“-2(M)/Im d,f_k_3 of the equation 

d+i3 = S-(*CO), (33) 

which is automatically an element of /\:-kP2 (fi(‘))/Im dz_k_3. As before, for the Moutard 

operator to be non-trivial M must be non-compact, since otherwise /$,(HC2)) = Im dL_, 

and AI;-“-’ (fi(‘)) = Im dz_k_3. Notice also that the Moutard transform of a k-form w 
has different degree than CO, unless n = 2m is even and k = m - 1, with m = 1.2, . 
For instance, when m = 1 we have II = 2, k = n - k - 2 = 0, and we obtain the 
generalization of the classical Moutard transformation to Riemannian surfaces introduced 
in Section 4. 

6. Examples 

We present in this section a few examples of the two-dimensional Darboux transformation 
on curved surfaces based on the theory of quasi-exactly solvable Hamiltonians [6,7]. 

As our first example, consider the first-order differential operators 

J ’ = a., ) J2 = a,. J” =x8,. 

J”=xa,, J” = yi3,, J6 = x2 8, + xy& - 2x. 

The above differential operators span a Lie algebra tr E ~((2, rW) pi Iw*, which coincides 
with the canonical form (1.1 1) in the classification of Lie algebras of differential operators 
in two variables of Ref. [8] for n = r = 2. The latter Lie algebra is quasi-exactly solvable, 

[6], since it preserves the subspace N c C”(R2) whose elements are the polynomials in 
the variables (x, y) of total degree less than or equal to 2. 
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Let J denote the following element of the universal enveloping algebra of 9: 

J = (J’)2 + (J2)2 + 4 (a - b) (5’)’ + 4b (J5)2 + 4u (a - 2b) (J6)2 

+ 2a {J3, J5} - 4 (2~ + b) J” + 2 (a - 12b) J5 + 5(7b - a), 

where a, b are real parameters such that 

a > 2b > 0. (34) 

If we define 

u = $ log[l + 2(u - 2b)x*] - ; log[l + 2(u x2 + 2 b y*)], 

then it can be shown that 

-ea . J . epu = h, (35) 

where h = -A + V (x, y) is a Schrodinger operator on the manifold M = R2 endowed 
with an appropriate metric. More precisely (cf. [6, Example 4.3.3]), the contravariant metric 
tensor (g’j) has components 

g ” = (1 + 2ux2)[1 + 2(u - 2b)x2], 

g I2 = 2ax y [l + 2(a - 2b)x*], 

g 
22 =1+4by2+4u(u-2b)x2y2, 

and Gaussian curvature 

K = -2u[l +4(u -2b)x2], 

and the potential V(x, y) is given by 

V=-3u(u-2b)x2- 
b 48b 

1 +2(u-2b)x* - 1 +2(ux* +2by2)’ 

Since J belongs to the universal enveloping algebra of g by construction, it restricts to the 
finite-dimensional vector space N. We can therefore easily diagonalize J ]N, obtaining the 
eigenvalues 

ho=-5a+23b+4s, hl =-5a+23b-4s, h2 = -u+3b, 

h3=-9u+27b, h4 = -3a+ 15b, A5 = -3u +7b, 

where 

s=&z2-2ab+9b2. 

Their corresponding eigenfunctions are given by 

qo=3b+s++a((a-2b)x2, qq =3b-s+2a(u-2b)x2, 

q~~=1+2ux~-l6by*, ‘p3 =x, ‘p4 = y> cps =xy. 
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By (35), the Schrijdinger operator h possesses the six eigenfunctions 

@i = eb Vi, Osi_(5, 

with energies 

Ei = -hi. (36) 

The first of these eigenfunctions has no zeros, and therefore it must correspond to the ground 
state of h. The ground state energy of h is then given by 

which is indeed manifestly lower than the remaining five energies (36) by (34). 
To define the twisted Hamiltonian H and the Darboux transform of the eigenfunctions 

$i, it is convenient to take as e-x a constant multiple of the ground state +o, since this 
eigenfunction has no zeros. We shall therefore define 

x = - log@ + c) - 0, 

where the constant c > 0 is given by 

3b+s 

‘=2a(u-2b)’ 

According to (22), the action of H on a vector field X can be expressed as 

(I?tX)’ = (-VjVj + U) Xi + V’j Xj, 

where u = V - Eo + K and V’j = 2 Vi Vj x. After a long but straightforward calculation 
we find that 

v=-7u+23b+4s - llaYX2 - 
b 48b 

1+2yx2- 1 +2(ax2+2by2)’ 

v12 = - 
48abxy(l +2yx2) 

1 +2(ax2+2by2) ’ 

v2, =- 
48axy(b+uyx’) + x y p6b) 

1 +2(ux2+2by2) y a (c + x2)2 (I + 2 y x2) ’ 

where 

y=u-2b>O 

and 

&j(x) = 48u2 y3 x6 + 4uy2 (9~ + 12b + 4s)x4 + 4 )/ @a2 - 9ub - us + 18bs 

+ 54 b2) x2 + 5u2 - 22ub - 4us + 30bs + 90b2. 

Note, in particular, that V’2 # V2 1. 
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The Darboux transforms d-r/r; of the eigenfunctions I&, 1 5 i 5 5, constructed above 
can also be computed in a straightforward way using (24) with the following result: 

4eOs.x 
d-r+kl = -dx, 

c+x* 

d-$2 =2e” 
x(16b~2+2ac- 1) c + x2 dx - 16bydy , 1 

dd$3=eC edx. 
c + x* 

ddr,!rd=ee(S 
2xp 

--ddx+dy , 
c + x* I 

d-1Cr5=eu Y(C-X2) 
[ c+x2 dx+xdy . 1 

As explained in Section 4 the five vector fields associated to these l-forms are formal 
eigenvectors of fit with eigenvalues Ei - Eo, 1 5 i ( 5. For example, the first of these 
vector fields is 

4sx 
1+2yx2 

c +x2 
em[(l +2ax2)a, +2uxy$]. 

In this case, it is easy to show that the five formal eigenvectors of 61 constructed above 
are actually square-integrable. Indeed, the square of the L* norm of a vector field X can be 
expressed as 

where g = det(gii) and X; (i = 1, 2) are the components of the associated l-form X”. But 

eZa& = (I + 2a x2 + 4 b y*)-‘I* < const. Y-‘, i=,i,z,,,,. 

and a straightforward calculation shows that e-*” g’j Xi Xi is bounded by a constant times 
r4 as r + 00 when X” = dd@i for i = 1, . , 5, thus proving our contention. 

The limiting case 

u = 2b 

of the previous example is worth studying, because in this case the curvature is constant 
and negative 

K = -4b < 0. 

Diagonalizing again J IN we find the eigenvalues 

ho = 25b, kI = 9b, h2 = b, 
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of respective multiplicities 1, 2 and 3. The corresponding eigenfunctions are 

wo= 1, 91 =x, ‘p2 = .Y, $73 =x.Y, $04 = 126x2 - 1, cps = 12b).2 - I. 

As before, the six functions $; = ea cp; are eigenfunctions of II with eigenvalue Ei = -A;, 
where (T can be taken as 

cr = -; log(l + 4hr’). 

Again, the first of these eigenfunctions has no zeros, and therefore corresponds to the ground 
state, with ground energy 

Eo = -25 h 

Taking $0 = e-x, or equivalently 

x=--a, 

we find 

v=20b- 
48b 96b2xy 

I +4br2’ 
v12 = p, = - 

1+4br2’ 

The Darboux transforms of the eigenfunctions I/J; (1 5 i 5 5) are easily computed. Their 
associated vector fields, which are as usual eigenvectors of &t with eigenvalues Ei - Eo, 
are 

e” [(l + 46x2)& + 4bxy$], e” [4bxy& + (1 + 4by2)$], 

en [(l + 8bx2)y& + (1 + Sby”)x$l, 24bec [( 1 + 4bx2)x& + 4bx2y3,], 

24be” [4bxy2t3, + (1 + 4by2)y$]. 

Since 

e20 fi= (1 +4br2)-7/2, 

an argument analogous to the one for the previous example shows that the latter eigenvectors 
are all square-integrable. 

Consider now the canonical form (2.3) (with n = 2) in the classification of Ref. [S], 
which is the Lie algebra $1 2 ~((3, Iw) spanned by the first-order differential operators 

J’ = &, J2 = ay. J” =x&, J4 = y a,, J5 =X a,, J6 = y a,, 

57=X2a,x +xya,, -2x, 38 =x4’a,+y2a, -2y. 

The latter Lie algebra leaves invariant the finite-dimensional subspace N c C”(rW2) in- 
troduced in the previous examples, so that it is again quasi-exactly solvable. Let J denote 
the element of the universal enveloping algebra of (J given by 

J = (J*)* + 1 (J2)2 + a [I (J7)2 + (J8)2] 

+b((J’, J7]+{J2. J8}+7J3+7J6), 
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where a, 1 are positive real parameters, b 2 0, and 

y=la-b2>0. 

If 

p=b+a(1x2+y2) 

and 

(T = -i log@* + v) + i b y-‘12 arctan(y-‘/* p) , 

(37) 

it is shown in [6] that (35) defines again a Schrodinger operator h, with potential V given 

by 

,=_;,-;,, 
(192b2 -45al)p+ 143abl - 192b3 

4 (P2 + v) 

The metric of the Riemannian manifold M = [w* has now contravariant components 

11 
g = 1 +x=(b+p), 

s 12=xy(b+p), 

g 22 = I+ y= (b + P), 

and Gaussian curvature given by 

K = -2~. 

The eigenvalues of J IN are easily found to be 

ho =4b+2s, hl = 4b - 2s, h2 = 12b, h3 =2b, 

where 

S&-i, (38) 

and the last two eigenvalues have multiplicity 2. The corresponding eigenfunctions are 
respectively 

s-4b 
cp()=Lx*+y=+- 

a ’ 
cp, &“+y’_S+ 

a 

Q =1x= - y2, ‘p3 =xy, ‘p4 =x, $5 =)‘. 

On account of (35), multiplying these eigenfunctions of J by the factor en we obtain six 
eigenfunctions Ii/i = eU vi of h, with energies Ei = -hi. As in the previous examples, the 
first of these eigenfunctions never vanishes, and therefore it corresponds to the ground state 
of h, with ground energy given by 

Eo=-4b-2s. 
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We therefore take 

x = -log$o = -0 -log(Zx2+y2+k), 

with 

s-4b 
k=- > 0, 

a 

obtaining 

u=2s-~b-+p+ 
(192b2 -45al)p + 143abl - 192b3 

4 (P2 + Y) 

and 

v$ = 2ax.y P3(p) 2 

(~~+y)(p+s-56)~’ 
v , = 1 v$, 

where 

Pj(p)=(27b-4s)p3+(9al+14bs-79b2)p2 

+(317b3 -76b2s - 16abl +Gals)p 

-201b4+187ab21-50bys+14a212. 

Note that the denominator of V1 2 never vanishes on account of (37) and (38). 
The Darboux transforms of the eigenfunctions @i (1 5 i 5 5) are given by 

4se” 
d-+1 = 

a(k+Ix2+y2) 
(lxdx+ydy), 

d-ti2= 2e” 
k+1x2+y2 

[Ix(k+2y2)dx-(k+2fx2)ydyl, 

d-q3= ea 
k+1x2+y2 

[y(k-1X2+y2)dx+x(k+1X2-y’)dy], 

d-q4= e” 
k+1x2+y2 

[(k-Ix2+y2)dx-2xydy], 

d-es= e0 
k+1x2+y2 

[-21xydx+(k+1X2-y’)dy]. 

The vector fields associated to these l-forms are eigenvectors of fit with eigenvalue Ei - Eo. 
As in the previous examples, the latter vector fields are easily found to be square-integrable 
on M on account of the asymptotic behavior at infinity of e202/g and e-O (ddqi). 
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